Strategy Design of Hybrid Energy Storage System for Smoothing Wind Power Fluctuations
نویسندگان
چکیده
With the increasing contribution of wind power plants, the reliability and security of modern power systems have become a huge challenge due to the uncertainty and intermittency of wind energy sources. In this paper, a hybrid energy storage system (HESS) consisting of battery and supercapacitor is built to smooth the power fluctuations of wind power. A power allocation strategy is proposed to give full play to the respective advantages of the two energy storage components. In the proposed strategy, the low-frequency and high-frequency components of wind power fluctuations are absorbed by battery groups and supercapacitor groups, respectively. By inhibiting the low-frequency components of supercapacitor current, the times of charging-discharging of battery groups can be significantly reduced. A DC/AC converter is applied to achieve the power exchange between the HESS and the grid. Adjustment rules for regulating state-of-charge (SOC) of energy storage elements are designed to avoid overcharge and deep discharge considering the safety and the high efficiency of the energy storage elements. Experimental results on the test platform verify the effectiveness of the proposed power allocation strategy in DC/AC converter and battery SOC adjustment rules for regulating SOC levels.
منابع مشابه
A Power Smoothing Control Strategy and Optimized Allocation of Battery Capacity Based on Hybrid Storage Energy Technology
Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind spe...
متن کاملOperation and Control of Hybrid Fuel Cell/ Energy Storage Distributed Power Generation System during voltage Sag Conditions
This paper presents a control strategy for fuel cell/energy storage power generation system during voltage sag conditions. The hybrid DC power sources are connected to grid using power electronic converters include DC-DC converter and grid connected voltage source inverter. The power from hybrid power sources is controlled during voltage sag by designing of control strategy for DC-DC converter....
متن کاملPower Management in a Utility Connected Micro-Grid with Multiple Renewable Energy Sources
As an efficient alternative to fossil fuels, renewable energy sources have attained great attention due to their sustainable, cost-effective, and environmentally friendly characteristic. However, as a deficiency, renewable energy sources have low reliability because of their non-deterministic and stochastic generation pattern. The use of hybrid renewable generation systems along with the storag...
متن کاملOperation and Control of Hybrid Fuel Cell/ Energy Storage Distributed Power Generation System during voltage Sag Conditions
This paper presents a control strategy for fuel cell/energy storage power generation system during voltage sag conditions. The hybrid DC power sources are connected to grid using power electronic converters include DC-DC converter and grid connected voltage source inverter. The power from hybrid power sources is controlled during voltage sag by designing of control strategy for DC-DC converter....
متن کاملFuzzy-Logic Based Frequency Controller for Wind Farms Augmented With Energy Storage and PV Systems
To improve the primary frequency response in future low-inertia hybrid power system a fuzzylogic based frequency controller (FFC) for wind farms augmented with energy storage systems(wind-storage system) and intelligent PV farms for the frequency stabilization is proposed inthis paper. Using system frequency deviations the proposed controller provides bidirectionalreal p...
متن کامل